Chapter - 01

Square and square root

Q1. Show that $(10,24,26)$ is a Pythagorean triplet and also verify it.
Q2. How many non square numbers between $(101)^{2}$ and (102) ${ }^{2}$?
Q3. Write thousand place of $(\mathbf{1 1 1 1 1})^{2}$.
Q4. Write square root of $\mathbf{2 5 6}$ by repeated subtraction method.
Q5. Write square root of $\mathbf{4 0 9 6}$ by prime factorization method.
Q6. Find the smallest number by which 3645 must be divided so that it becomes a perfect square. Also find the square root of the resulting number.

Q7. An officer wants to arrange 202500 cadets in the form of a square. How many cadets were there in each row?

Q8. Find the square root of 1471369 by long division method.
Q9. Find the greatest number of 6-digits which is a perfect square. Also find the square root of the number so obtained.

Q10. Find the least number of $\mathbf{6}$-digits which is a perfect square. Find the square root of the number so obtained.

Q11. Find the square root of $23 \frac{394}{729}$
Q12. Find the square root of $\mathbf{1 5 0 . 0 6 2 5}$
Q13. Find the square root of $\mathbf{7}$ correct to three decimal places.
Q14. Find the square root of $\mathbf{4 1 0}$ by estimation.
Q15. The area of square plot is $800 \mathrm{~m}^{2}$. Find the estimated length of the side of the plot.

Chapter-02

Cubes and cube roots

Q1. Find the smallest number by which 2560 must be multiplied so that the product is a perfect cube.

Q2. Find the smallest number by which 8788 be divided so that the quotient is a perfect cube.

Q3. Find the cube root of 21952 by prime factorization method.
Q4. Find the cube root of $\mathbf{- 2 7 4 4 0 0 0}$
Q5. Evaluate :
(i) $\sqrt[3]{8 \times 125}$
(ii) $\sqrt[3]{3375 \times(-729)}$
(iii) $\sqrt[3]{4^{3} \times 5^{3}}$

Q6. Find the cube root of the following rational numbers.
(i) $\frac{-512}{343}$
(ii) $\frac{-686}{-2662}$

Q7. Find the cube root of 91125 through estimation.
Q8. A school decided to award prizes to students for three values - discipline, cleanliness of environment and regularity in attendance. The numbers of students getting prizes in the three categories are in the ratio 1:2:3. If product of ratios is 162, then -
(a.) Find the number of students getting prizes for each value.
(b.) Name any other two values that you can inculcate.

Q9. Prove that if a number is tripled, then its cube is 27 times the cube of the given number.

Q10. Find the cube of $\mathbf{- 0 . 0 1}$
Q11. Find the values of the followings cube roots.
(i) $\sqrt[3]{0.008}$
(ii) $\sqrt[3]{\frac{-64}{1331}}$
(iii) $\sqrt[3]{27 \times 2744}$

Q12. Evaluate :
$\sqrt[3]{\frac{0.027}{0.008}} \div \sqrt{\frac{0.09}{0.04}}-1$
Q13. Evaluate :
$\sqrt[3]{288 \sqrt[3]{72 \sqrt[3]{27}}}$
Q14. Three numbers are in the ratio 2:3:4. The sum of their cubes 33957 . Find the numbers.

Q15. Find the volume of a cube whose surface area is $150 \mathrm{~m}^{2}$.

Chapter - 03

Exponents and Radicals

Q1. Write the laws of exponents.
Q2. Verify that -

$$
\left[(729)^{\frac{-5}{3}}\right]^{\frac{-1}{2}}=(729)^{\frac{-5}{3} \times\left(\frac{-1}{2}\right)}
$$

Q3. Simplify :
$\frac{(64)^{\frac{-1}{6}} \times(216)^{\frac{-1}{3}} \times(81)^{\frac{1}{4}}}{(512)^{\frac{-1}{3}} \times(16)^{\frac{1}{4}} \times(9)^{\frac{-1}{2}}}$
Q4. Simplify and express the answer with positive exponents :
$\left[\sqrt[3]{x^{4} y} \times \frac{1}{\sqrt[3]{x y^{7}}}\right]^{-4}$
Q5. Evaluate :
(i) $3 \times(16)^{\frac{3}{4}}$
(ii) $2 \times(27)^{\frac{-2}{3}}$
(iii) $2 \times 9^{\frac{3}{2}} \times 9^{\frac{-1}{2}}$

Q6. Find the value of $\left[(5)^{2}+(12)^{2}\right]^{\frac{1}{2}}$

Q7. Find the value of x, if :

(i) $\quad 2^{x}+2^{x}+2^{x}=192$
(ii) $8^{255}=(32)^{x}$
(iii) $\quad 2^{2 x+2}=4^{2 x-1}$

Q8. If $4^{x}-4^{x-1}=24$, then find the value of x .
Q9. Evaluate :

$$
\left(6^{-1}-8^{-1}\right)^{-1}+\left(2^{-1}-3^{-1}\right)^{-1}
$$

Q10. If $3^{x-1}=9$ and $4^{y+2}=64$, find the value of $\frac{y}{x}-\frac{x}{y}$
Q11. If $9^{x} \times 3^{2} \times\left[3^{\frac{-x}{2}}\right]^{-2}=\frac{1}{27}$, find x.
Q12. By what number should $\left[\frac{-3}{2}\right]^{-3}$ be divided so that the quotient may be $\left[\frac{-8}{27}\right]^{-2}$

